Benchmarking¶
Platform¶
Platform |
Output |
---|---|
CPU |
1 with 2x Intel Xeon E5-2680 v2 processors of 2.80 GHz |
Memory |
128 GB |
OS |
??? |
BLAS |
??? |
Compiler |
??? |
Sample Calculation Settings¶
Molecule |
Basis |
Sym. |
\(\epsilon_1\) |
\(\epsilon_2\) |
Nodes |
---|---|---|---|---|---|
\(C_2\) |
QZ |
\(^1A_{1g}\) |
\(8*10^{-5}\) |
\(1*10^{-8}\) |
1 |
\(N_2\) |
QZ |
\(^1A_{1g}\) |
\(8*10^{-5}\) |
\(1*10^{-8}\) |
1 |
\(NO\) |
QZ |
\(^2B_{1}\) |
\(8*10^{-5}\) |
\(1*10^{-8}\) |
1 |
\(O_2\) |
QZ |
\(^3A_{1g}\) |
\(8*10^{-5}\) |
\(1*10^{-8}\) |
1 |
\(F_2\) |
QZ |
\(^1A_{1g}\) |
\(8*10^{-5}\) |
\(1*10^{-8}\) |
1 |
\(Cr_2\) |
DZ |
\(^1A_{1g}\) |
\(8*10^{-5}\) |
\(5*10^{-6}\) |
1 |
\(Cr_2\) |
TZ |
\(^1A_{1g}\) |
\(8*10^{-5}\) |
\(5*10^{-6}\) |
4 |
\(Cr_2\) |
QZ |
\(^1A_{1g}\) |
\(8*10^{-5}\) |
\(5*10^{-6}\) |
4 |
Sample Calculation Results¶
Molecule |
\(N_v\) |
Total Energy (Ha) |
Total Time (sec) |
---|---|---|---|
\(C_2\) |
403071 |
-75.8018(4) |
46 |
\(N_2\) |
499644 |
-109.4055(9) |
54 |
\(NO\) |
606381 |
-129.7548(9) |
116 |
\(O_2\) |
770069 |
-150.1748(9) |
95 |
\(F_2\) |
1053491 |
-199.3590(9) |
151 |
\(Cr_2\) |
3114163 |
-2099.48754(3) |
741 |
\(Cr_2\) |
6268840 |
-2099.5283(1) |
1076 |
\(Cr_2\) |
9516339 |
-2099.55670(7) |
3385 |
From: S. Sharma, A. A. Holmes, G. Jeanmairet, A. Alavi, C. J. Umrigar, “Semistochastic Heat-bath Configuration Interaction method: selected configuration interaction with semistochastic perturbation theory.” Journal of Chemical Theory and Computations, 2017, 13, 1595.